Abstract
Many algorithms for performing inference in graphical models have complexity that is exponential in the treewidth — a parameter of the underlying graph structure. Computing the (minimal) treewidth is NPcomplete, so stochastic algorithms are sometimes used to find low width tree decompositions. A common approach for finding good decompositions is iteratively executing a greedy triangulation algorithm (e.g. minfill) with randomized tie-breaking. However, utilizing a stochastic algorithm as part of the inference task introduces a new problem — namely, deciding how long the stochastic algorithm should be allowed to execute before performing inference on the best tree decomposition found so far. We refer to this dilemma as the Stopping Problem and formalize it in terms of the total time needed to answer a probabilistic query. We propose a rule for discontinuing the search for improved decompositions and demonstrate the benefit (in terms of time saved) of applying this rule to Bayes and Markov network instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.