Abstract

In this study, the stopping power, CSDA range and radiation yield calculations of electrons and positrons over the 20 eV–1 GeV energy range in some water equivalent polymer gel dosimeters were performed. For collision stopping power calculations of electrons and positrons the effective charge concept proposed by Sugiyama were considered. Here, both the effective charge of incident electrons and positrons (z*) and the effective charge (Z*) and the effective mean excitation energy (I*) of the target material were calculated. For the density effect correction the Fano model was selected. For the radiative stopping power analytical model based on the ratio between the collision and the radiative stopping power discribed by Attix was considered. For CSDA range and radition yield the continuous slowing down approximation (CSDA) was considered and the calculations were performed using numerical integral methods. Because of their water equivalent and 3D dose distribution properties, MAGIC and MAGAS polymer gels were selected as a target materials. The calculations were performed by programming all the equations discribed in this study as a computational code. The results of the stopping power, range and radiation yield were compared with those of ESTAR program and PENELOPE Monte Carlo modelling. Some deviations in low and high energy region between the calculated and reference data were observed. However, the similarity between calculated and reference data is remarkable. For the collision stopping power and CSDA range a good agreement between the calculated and reference data was observed for energies >1 keV. Whereas, for the radiative stopping power a good agreement was observed for energies >100 keV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call