Abstract
The aim of this paper is to introduce some techniques that can be used in the study of stochastic processes which have as parameter set the positive quadrant of the plane R 2 +. We define stopping lines and derive an interesting property of measurability for them. The notion of predictability is developed, and we show the connection between predictable processes, fields associated with stopping lines, and predictable stopping lines. We also give a theorem of section for predictable sets. Extension to processes indexed by any partially ordered set with some regularity assumptions can be carried out quite easily with the same techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.