Abstract

We demonstrate efficient storage and retrieval of light pulses by electromagnetically induced transparency (EIT) in a Pr^{3+}:Y_{2}SiO_{5} crystal. Using a ring-type multipass configuration, we increase the optical depth (OD) of the medium up to a factor of 16 towards OD≈96. Combining the large optical depth with optimized conditions for EIT, we reach a light storage efficiency of (76.3±3.5)%. In addition, we perform extended systematic measurements of the storage efficiency versus optical depth, control Rabi frequency, and probe pulse duration. The data confirm the theoretically expected behavior of an EIT-driven solid-state memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call