Abstract
The kinetic mechanism of monoamine oxidase B involves either a binary or a ternary complex, depending on the substrate. In this study, stopped-flow kinetic data provide direct evidence for ternary complexes not only of reduced enzyme, oxygen, and product but also of reduced enzyme, oxygen, and substrate, both for benzylamine and for the tertiary amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the mechanism for a given substrate is not exclusive but, rather, is determined by competition between the alternate pathways as a result of different rate constants for the oxidation of the reduced enzyme, the reduced enzyme-product complex, and the reduced enzyme-substrate complex, as well as the different dissociation constants for the complexes. Comparison of the rate constants obtained from the stopped-flow studies with steady-state data indicates that the overall rate of reaction for the oxidation of MPTP by monoamine oxidase is dominated by the reductive step, but for benzylamine the steady-state rate is determined by a complex function of the rates of both the reductive and oxidative half-reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.