Abstract

A stopped-flow technique was used to study the spectral changes occurring in bilirubin-albumin following a pH jump as well as following binding of bilirubin at 25 degrees C. The changes were studied in two wavelength ranges, 280-310 nm (tyrosine residues) and 400-510 nm (bound bilirubin). The changes were analyzed according to a scheme of consecutive unimolecular reactions. Spectral monitoring of a pH jump from 11.3 to 11.8 reveals that the bilirubin-albumin complex changes its structure in several steps. The UV absorption spectra show that 3.8 tyrosine residues ionize in the first step, 2.5 in the second, none in the third, and 0.8 in the fourth and following steps. The visible absorption spectrum of bound bilirubin changes in the second, third, and fourth steps. The bilirubin spectra of the different bilirubin-albumin complexes occurring in the transition show a common isosbestic point at 445 nm, indicating a change of the dihedral angle between the two bilirubin chromophores in a three-step reaction. It is suggested that 1 tyrosine residue is located close to the bilirubin site and is externalized in the second step. Bilirubin binding to albumin was monitored at two pH values, 11.3 and 11.8. At pH 11.3 the complex changes its structure in a three-step relaxation sequence. A change of the dihedral angle between the bilirubin chromophores can explain the spectral changes observed in the second and third relaxations. Protonation of 0.7 tyrosine residues occurs in the third relaxation, suggesting internalization of a tyrosine residue as a late consequence of bilirubin binding. At pH 11.8 a two-step relaxation sequence follows bilirubin binding. No tyrosine protonation occurs. Bilirubin is probably bound more superficially at pH 11.8 than at pH 11.3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call