Abstract

Histamine dehydrogenase from Nocardioides simplex (HmDH) which catalyzes the oxidative deamination of histamine is an iron-sulphur-containing flavoprotein. For our further understanding on the intramolecular electron transfer process, the reductive half reaction of HmDH with histamine has been studied by stopped flow spectrophotometry at pH 7.5 and 10. The reaction at pH 7.5 is found to be analysed on a kinetic model composed of three sequential first-order reactions. The first fast phase, of which the rate constant shows a hyperbolic dependence on the histamine concentration, is assigned to a direct two-electron reduction of the oxidized flavin (CFMN(O)) by histamine with no involvement of the semiquinone form of the flavin (CFMN(S)). The second moderate process is the substrate-independent intramolecular single-electron transfer from the reduced flavin to the oxidized iron-sulphur cluster. The third slow process is considered to reflect the second binding of histamine to CFMN(S), which is responsible for the substrate inhibition. At pH 10, the reaction is analysed with one pseudo-first-order reaction phase which is substrate-dependent two-electron reduction of CFMN(O) coupled with the subsequent fast intersubunit single-electron transfer. The UV-vis spectroscopy of HmDH suggests the deprotonation of Tyr residues, which seems to cause the switching of the electron transfer property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call