Abstract

Calcium (Ca) is essential for plant growth and stress adaptation, yet its availability is often limited in acidic soils, posing a major threat to crop production. Understanding the intricate mechanisms orchestrating plant adaptation to Ca deficiency remains elusive. Here, we show that the Ca deficiency-enhanced nuclear accumulation of the transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) in Arabidopsis thaliana confers tolerance to Ca deprivation, with the global transcriptional responses triggered by Ca deprivation largely impaired in the stop1 mutant. Notably, STOP1 activates the Ca deprivation-induced expression of CATION/Ca2+ EXCHANGER 1 (CCX1) by directly binding to its promoter region, which facilitates Ca2+ efflux from endoplasmic reticulum to cytosol to maintain Ca homeostasis. Consequently, the constitutive expression of CCX1 in the stop1 mutant partially rescues the Ca deficiency phenotype by increasing Ca content in the shoots. These findings uncover the pivotal role of the STOP1-CCX1 axis in plant adaptation to low Ca, offering alternative manipulating strategies to improve plant Ca nutrition in acidic soils and extending our understanding of the multifaceted role of STOP1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.