Abstract

Reduced serotonin neurotransmission is implicated in disorders of impulse control, but the involvement of serotonin in inhibitory processes in healthy human subjects remains unclear. To investigate the effects of an acute manipulation of serotonin and genotype at a functional polymorphism in a gene coding for the serotonin transporter (5-HTT) on an established measure of response inhibition. Serotonin function was reduced by the acute tryptophan depletion (ATD) procedure in a double-blind, crossover design in 42 healthy subjects. The Stop Signal Task (SST) was administered 5-7 h after drink administration. The influences of 5-HTT polymorphism, gender and trait impulsivity were investigated. ATD was associated with significant depletion of plasma tryptophan levels but did not increase the stop signal reaction time in comparison to the balanced (placebo) amino acid mixture. Subjects possessing the short allele of the 5-HTT polymorphism were not more impulsive on the SST than subjects homozygous for the long allele under placebo conditions and were not disproportionately sensitive to the effects of ATD. There was no effect of gender or trait impulsivity on ATD-induced change. We find no support for the involvement of brain serotonin neurotransmission in this form of inhibitory control in healthy human subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.