Abstract

In humans, recognition of a stop codon by protein release factor eRF1 leads to release of the nascent peptide from the ribosome. Although efficient eRF1 activity is usually desirable, numerous pathologies result from eRF1 recognition of premature stop mutations in essential genes. In these cases, decreased eRF1 activity could increase readthrough of the premature stop codon, thereby making full-length protein. To broaden the means available to beneficially decrease eRF1 activity, we have targeted eRF1 mRNA using siRNAs and antisense oligonucleotides. We show that both eRF1-targeted siRNA and antisense oligonucleotides decrease eRF1 mRNA and eRF1 protein concentrations, and increase UAG readthrough in cultured human cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.