Abstract

Recent advances in rapidly quenched ultracold atomic Fermi gases near a Feshbach resonance have brought about a number of interesting problems, in the context of observing the long-sought Stoner ferromagnetic phase transition. The possibility of experimentally obtaining a "quasirepulsive" regime in the upper branch of the energy spectrum due to the rapid quench is currently being debated, and the Stoner transition has mainly been investigated theoretically by using perturbation theory or at high polarization, due to the limited theoretical approaches in the strongly repulsive regime. In this work, we present a nonperturbative theoretical approach to the quasirepulsive upper branch of a Fermi gas near a broad Feshbach resonance, and we determine the finite-temperature phase diagram for the Stoner instability. Our results agree well with the known quantum Monte-Carlo simulations at zero temperature, and we recover the known virial expansion prediction at high temperature for arbitrary interaction strengths. At resonance, we find that the Stoner transition temperature becomes of the order of the Fermi temperature, around which the molecule formation rate becomes vanishingly small. This suggests a feasible way to observe Stoner ferromagnetism in the nondegenerate temperature regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call