Abstract

The propagation of Stoneley waves in a fluid‐filled borehole with a vertical fracture is investigated both theoretically and experimentally. The borehole propagation excites fluid motion in the fracture and the resulting fluid flow at the fracture opening perturbs the fluid‐solid interface boundary condition at the borehole wall. By developing a boundary condition perturbation technique for the borehole situation, we studied the effect of this change in the boundary condition on the Stoneley propagation. Cases of both hard and soft formations have been investigated. The fracture has minimal effects on the Stoneley velocity, except in the very low frequency range in which the Stoneley velocity drastically decreases with decreasing frequency. Significant Stoneley‐wave attenuation is produced because of the energy dissipation into the fracture. The quantitative behavior of these effects depends not only on fracture aperture and borehole radius, but also on the acoustic properties of the formation and fluid. ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.