Abstract

It has been shown that the two different orientations of Stone–Wales (SW) defects, i.e. longitudinal and circumferential SW defects, on carbon nanotubes (CNTs) result in two different electronic structures. Based on density functional theory we have shown that the longitudinal SW defects do not open a bandgap near the Fermi energy, while a relatively small bandgap emerges in tubes with circumferential defects. We argue that the bandgap opening in the presence of circumferential SW defects is a consequence of long-range symmetry breaking which can spread all the way along the tube. Specifically, the distribution of contracted and stretched bond lengths due to the presence of defects, and hopping energies for low-energy electrons, i.e. the 2pz electrons, show two different patterns for the two types of defects. Interplay between the geometric features and the electronic properties of the tubes have also been studied for different defect concentrations. Considering π-orbital charge density, it has also been shown that the deviations of bond lengths from their relaxed length result in different doping for two defect orientations around the defects—electron-rich for a circumferential defect and hole-rich for a longitudinal one. We have also shown that, in the tubes having both types of defects, circumferential defects would dominate and impose their electronic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.