Abstract

Stone dualities are dual equivalences between certain categories of algebras and those of topological spaces. A Stone duality is often derived from a dual adjunction between such categories by cutting down unnecessary objects. This dual adjunction is called the fundamental adjunction of the duality, but building it often requires concrete topological arguments. The aim of this paper is to construct fundamental adjunctions generically using (op)fibered category theory. This paper defines an abstract notion of formal spaces (including ordinary topological spaces as the leading example), and gives a construction of a fundamental adjunction between the category of algebras and the category of corresponding formal spaces. Moreover, prove an Adjoint Lifting Theorem in the setting of near 2-fibrations, and construct the fundamental adjunction of Priestley duality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.