Abstract

For the first time, stone cells in pear and apple pedicel were studied. The lignification of the pedicel outer part was correlated with flesh, and the secondary cell wall biosynthesis genes were activated. Fruit pedicels act as bridges between the fruit and the shoot. They have secondary thickened cell walls that presumably function in mechanical support, water and nutrient transport. Stone cells are cells with a secondary cell wall thickening. In pears, yet not in apples, the stone cells affect the flesh texture. There have been few reports on stone cell formation in pear and apple pedicels; therefore, we studied these cells for the first time. The apple pedicel had few stone cells in the cortex. The formation of stone cells in pear continued until seven weeks after flowering (WAF), and the density was significantly higher than in apple. The stone cell formation degree (SFD) of pear was 3.6-7.1 times higher than that of apple. Total lignin and lignin non-condensed structure (G and S units) content in the pear pedicle outer part was 1.5-2.7 times higher than that of the apple at harvest. The SFD of the pedicel outer part had a positive correlation with the G and S units content of the flesh. The total lignin and G and S units content between flesh and the pedicel outer part were positively correlated. Correlation analysis revealed a positive relationship between fruit and pedicel formation of the stone cells. The WGCNA showed that NST3 was linked to NAC028, MYB46, CESA, POD, LAC, and VSR6. These genes were highly expressed in the outer part of the pear pedicel, while they were suppressed in that issue of the apple at 4 WAF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call