Abstract

Somatic sensory neurons of the dorsal root ganglia are necessary for a large part of our mechanosensory experience. However, we only have a good knowledge of the molecules required for mechanotransduction in simple invertebrates such as the nematode Caenorhabiditis elegans. In C. elegans, a number of so-called mec genes have been isolated that are required for the transduction of body touch. One such gene, mec-2 codes for an integral membrane protein of the stomatin family, a large group of genes with a stomatin homology domain. Using stomatin null mutant mice, we have tested the hypothesis that the founding member of this family, stomatin might play a role in the transduction of mechanical stimuli by primary sensory neurons. We used the in vitro mouse skin nerve preparation to record from a large population of low- and high-threshold mechanoreceptors with myelinated A-fiber (n = 553) and unmyelinated C-fiber (n = 157) axons. One subtype of mechanoreceptor, the d-hair receptor, which is a rapidly adapting mechanoreceptor, had reduced sensitivity to mechanical stimulation in the absence of stomatin. Other cutaneous mechanoreceptors, including nociceptive C-fibers were not affected by the absence of a functional stomatin protein. Patch-clamp analysis of presumptive D-hair receptor mechanoreceptive neurons, which were identified by a characteristic rosette morphology in culture, showed no change in membrane excitability in the absence of the stomatin protein. We conclude that stomatin is required for normal mechanotransduction in a subpopulation of vertebrate sensory neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.