Abstract
Abstract. Stomatal responses to humidity were studied in several species using normal air and a helium: oxygen mixture (79:21 v/v, with CO2 and water vapour added), which we termed ‘helox’. Since water vapour diffuses 2.33 times faster in helox than in air, it was possible to vary the water‐vapour concentration difference between the leaf and the air at the leaf surface independently of the transpiration rate and vice versa. The CO2 concentration at the evaporating surfaces (ci), leaf temperature and photon flux density were kept constant throughout the experiments. The results of these experiments were consistent with a mechanism for Stomatal responses to humidity that is based on the rate of water loss from the leaf. Stomata apparently did not directly sense and respond to either the water vapour concentration at the leaf surface or the difference in water vapour concentration between the leaf interior and the leaf surface. In addition, stomatal responses that caused reductions in transpiration rate at low humidities were accompanied by decreases in photosynthesis at constant ci, suggesting heterogeneous (patchy) stomatal closure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.