Abstract

Holm oak (Quercus ilex L.) is native to hot, dry Mediterranean forests where limited water availability often reduces photosynthesis in many species, and forest fires are frequent. Holm oaks resprout after a disturbance, with improved photosynthetic activity and water relations compared with unburned plants. To better understand the role of water availability in this improvement, watering was withheld from container-grown plants, either intact (controls) or resprouts after excision of the shoot, to gradually obtain a wide range of soil water availabilities. At high water availability, gas exchange rates did not differ between controls and resprouts. At moderate soil dryness, net photosynthesis of control plants decreased as a result of increased stomatal limitation, whereas gas exchange rates of resprouts, which had higher midday and predawn leaf water potentials, were unchanged. Under severe drought, resprouts showed a less marked decline in gas exchange than controls and maintained photosystem II integrity, as indicated by chlorophyll fluorescence measurements. Photosynthesis was down-regulated in both plant types in response to reduced CO2 availability caused by high stomatal limitation. Lower non-stomatal limitations in resprouts than in control plants, as evidenced by higher carboxylation velocity and the capacity for ribulose-1,5-bisphosphate regeneration, conferred greater drought resistance under external constraints similar to summer conditions at midday.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.