Abstract

Stomatal density, stomatal aperture length, area/leaf, and number of stomata/leaf were measured after the annual C3 agronomic grasses oats (Avena sativa) and wheat (Triticum aestivum), the C, woody legume honey mesquite (Prosopis glandulosa), and the perennial C4 grass little bluestem (Schizachyrium scoparium) were grown across a subambient carbon dioxide concentration ([CO2]) gradient from near 200 to 350 μmol/mol in a growth chamber. The purpose was to determine if the size and density of stomata vary in response to atmospheric [CO2] during growth, across a subambient [CO2] range representative of the doubling that has occurred since the last ice age. Changes in stomatal density and aperture length with increasing [CO2] were small when detected. Stomatal density decreased on adaxial flag leaf surfaces of wheat, and aperture length increased slightly with [CO2], Leaf area and number of stomata/flag leaf increased by similar proportions with [CO2] in two wheat cultivars. No consistent relationship between [CO2] and stomatal density or size was detected in mesquite, oats, or little bluestem. We conclude that individual plants of these species lack the plasticity to significantly alter stomatal density and aperture length in response to increasing atmospheric [CO2] in a single generation (annuals) or growing season (perennials).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.