Abstract

We have investigated the behavior of clusters of ferromagnetic particles in a colloidal dispersion subjected to a simple shear flow. To do so, the Stokesian dynamics method has been used under the assumption that the effect of Brownian motion is negligible. For the case of no shear flow, the aggregate structures obtained by the Stokesian dynamics simulations agree well with Monte Carlo results qualitatively. We can, therefore, conclude that the Stokesian dynamics simulations can capture thick chainlike clusters without introducing a specific clustering algorithm, which is indispensable for Monte Carlo simulations. The behavior of the thick chainlike clusters in a simple shear flow is summarized as follows. The thick chainlike clusters decline in the shear flow direction as time advances. Since longer clusters experience larger shear forces, it is difficult for them to survive in such a situation. The thick chainlike clusters, therefore, dissociate into some short clusters. Such clusters are relatively stable in a shear flow, so that they do not decrease significantly any more. The viscosities have a strong relationship with the internal structures of the aggregates. The instantaneous viscosities, therefore, fluctuate significantly for the case of the thick chainlike clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.