Abstract

We present a novel modeling to describe the steady-state and transient regimes of a continuous-wave pumped Raman laser emitting both Stokes and anti-Stokes photons. Our so-called iterative resonator method evaluates for every half round-trip time the longitudinal distribution of the intracavity pump, Stokes and anti-Stokes fields propagating in forward and backward directions. Although this Stokes-anti-Stokes iterative resonator is widely applicable, its most important asset resides in its ability to accurately model Raman lasers that feature cavity enhancement of the pump power and that emit both Stokes and anti-Stokes photons. Important here is that our modeling correctly incorporates the longitudinal intracavity field distributions, the generation of anti-Stokes photons, and the interference effects between incident and intracavity pump fields, and that it describes not only the lasers' steady-state operation but also their transient characteristics. We demonstrate for both a hydrogen-based and a silicon-based Raman laser with pump cavity enhancement that the Stokes-anti-Stokes iterative resonator performs better than the modeling methods presently used for these categories of Raman lasers. Finally, to demonstrate the potentialities of our modeling method, we numerically simulate, for the first time according to our knowledge, the anti-Stokes emission generated by a silicon-based Raman laser

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.