Abstract

The paper fully answers a long standing open question concerning the stability/instability of pure gravity periodic traveling water waves—called Stokes waves—at the critical Whitham–Benjamin depth hWB=1.363...\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \ exttt{h}_{\\scriptscriptstyle {\ extsc {WB}}}= 1.363... $$\\end{document} and nearby values. We prove that Stokes waves of small amplitude O(ϵ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal {O}( \\epsilon ) $$\\end{document} are, at the critical depth hWB\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \ exttt{h}_{\\scriptscriptstyle {\ extsc {WB}}}$$\\end{document}, linearly unstable under long wave perturbations. The same holds true for slightly smaller values of the depth h>hWB-cϵ2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \ exttt{h}> \ exttt{h}_{\\scriptscriptstyle {\ extsc {WB}}}- c \\epsilon ^2 $$\\end{document}, c>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ c > 0 $$\\end{document}, depending on the amplitude of the wave. This problem was not rigorously solved in previous literature because the expansions degenerate at the critical depth. To solve this degenerate case, and describe in a mathematically exhaustive way how the eigenvalues change their stable-to-unstable nature along this shallow-to-deep water transient, we Taylor-expand the computations of Berti et al. (Arch Ration Mech Anal 247:91, 2023) at a higher degree of accuracy, starting from the fourth order expansion of the Stokes waves. We prove that also in this transient regime a pair of unstable eigenvalues depict a closed figure “8”, of smaller size than for h>hWB\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \ exttt{h}> \ exttt{h}_{\\scriptscriptstyle {\ extsc {WB}}}$$\\end{document}, as the Floquet exponent varies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.