Abstract

Following Flaschka and Newell, the inverse problem for Painleve IV is formulated with the help of similarity variables. The Painleve IV arises as the eliminant of the two second-order ordinary differential equations originating from the nonlinear Schrodinger equation. Asymptotic expansions are obtained near the singularities at zero and infinity of the complex eigenvalue plane. The corresponding analysis then displays the Stokes phenomena. The monodromy matrices connecting the solutionY j , in the sectorS j to that inS j +1 are fixed in structure by the imposition of certain conditions. It is then shown that a deformation keeping the monodromy data fixed leads to the nonlinear Schrodinger equation. While Flaschka and Newell did not make any absolute determination of the Stokes parameters, the present approach yields the values of the Stokes parameters in an explicit way, which in turn can determine the matrix connecting the solutions near zero and infinity. Finally, it is shown that the integral equation originating from the analyticity and asymptotic nature of the problem leads to the similarity solution previously determined by Boiti and Pampinelli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call