Abstract

A general theorem for the Stokes flow over a plane boundary with mixed stick-slip boundary conditions is established. This is done by using a representation for the velocity and pressure fields in the three-dimensional Stokes flow in terms of a biharmonic function and a harmonic function. The earlier theorem for the Stokes flow due to fundamental singularities before a no-slip plane boundary is shown to be a special case of the present theorem. Furthermore, in terms of the Stokes stream function, a corollary of the theorem is also derived, providing a solution to the problem of the axisymmetric Stokes flow along a rigid plane with stick-slip boundary conditions. The formulae for the drag and torque exerted by the fluid on the boundary are established. An illustrative example is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.