Abstract

In this study, a novel hybridization approach, which is called CMASFS and is based on the covariance matrix adaptation evolution strategy (CMA-ES) and the stochastic fractal search (SFS) algorithms. To make the proposed algorithm dynamic, Gaussian walk equations involved in the diffusion process of SFS have been updated and the algorithm decide to use which the Gaussian walk equations. The effectiveness of the proposed algorithm is tested using CEC2017 benchmark functions having unimodal, multimodal, hybrid, and composition functions in 10, 30, 50, and 100 dimensions. The performance of the CMASFS algorithm is compared with 17 metaheuristic algorithms given in the literature over the CEC2017 benchmark functions. According to the results, it is seen that CMASFS is generally obtained better mean error values. Moreover, to show the superiority of the proposed algorithm, Friedman analysis and the Wilcoxon rank-sum test are applied to the test results of the algorithms. The results of the Wilcoxon signed-rank test show that the improvement with the CMASFS algorithm is statistically significant on the majority of the CEC2017. The results of Friedman test verify that the CMASFS is obtained the best rank compared to both the original SFS and other compared algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.