Abstract

Seven new metal–organic frameworks (MOFs), namely, {[Cd2(NDC)2(H2MDP)](H2O)} (1), [Cd(NDC)(H2MDP)] (2), {[Cd2(NDC)(HNDC)2(H2MDP)2](H2O)0.5} (3), [Cd(NH2–BDC)(H2MDP)2] (4), [Cd(NH2–BDC)(H2MDP)2] (5), [Cd(H2MDP)(Br–BDC)0.5(Br–HBDC)] (6), {[Co(H2MDP)(Br–BDC)](H2O)0.5} (7) (H2MDP = methylenebis(3,5-dimethylpyrazole), H2NDC = 1,4-naphthalenedicarboxylic acid, NH2–H2BDC = 2-amino-1,4-benzenedicarboxylic acid, Br–H2BDC = 2,5-dibromo-1,4-benzenedicarboxylic acid) have been controllably synthesized with H2MDP and different aromatic dicarboxylic acids by tuning metal-to-ligand molar ratios, temperature, solvents and metal ions. Compound 1 is a 3D 2-fold interpenetrated pcu framework of 412·63 topology constructed from paddle-wheel SBUs and trans-conformation H2MDP pillars, while compound 2 exhibits a 3D 3-fold interpenetrated diamondoid framework formed by single metal nodes via linear NDC2− and trans-conformation H2MDP ligands. Interestingly, compound 3 contains two different types of binuclear subunits formed by a pair of Cd(II) ions with partly deprotonated HNDC− ligands, and these subunits are further linked by completely deprotonated NDC2− and cis-conformation H2MDP ligands to form a 2D (4,4) network. Compounds 4 and 5 are solvent-induced structural isomers based on 2D (4,4) layers, and therefore have different solvent-accessible voids. Compounds 6 and 7, synthesized with different metal salts under similar solvothermal conditions, are characteristic of a 3D hydrogen-bonded supramolecular network, and a 3D 3-fold interpenetrated diamondoid network with equal number of left- and right-handed helical {Cd(H2MDP)}n chains further bridged together by linear Br–BDC2− ligands, respectively. In addition, the luminescent properties of solids 1–6 have been investigated at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.