Abstract

The double bond-to-ozone reaction stoichiometry was quantified for ozonation of several environmentally relevant unsaturated fatty acids and monoterpenes in saturated hydrocarbon solvents. Olefins with initial concentrations from 30 microM to 3mM were injected in a solvent (n-hexadecane, nonane, or cyclohexane) while an ozone-oxygen mixture was slowly bubbled through the solution. The number of ozone molecules consumed by the injection was quantified in the outgoing flow, and the expected 1:1 double bond-to-ozone reaction stoichiometry was observed only under subambient temperature conditions (T < 250 K). At room temperature, the effective number of double bonds oxidized by each ozone molecule increased to 2-5, with a higher degree of oxidation occurring at lower initial olefin concentrations. The observed enhancement in the stoichiometry is consistent with a competition between direct ozonation and free radical initiated oxidation of double bonds, with free radicals being produced by slow reactions between dissolved ozone and solvent molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.