Abstract
In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes are coexpressed. By the coexpression of Env glycoproteins that either can or cannot bind a neutralizing MAb in an env transcomplementation assay, virions were generated in which the proportion of MAb binding sites could be regulated. As the proportion of MAb binding sites in Env chimeric virus increased, MAb neutralization gradually increased. Virus neutralization by virion aggregation was minimal, as MAb binding to HIV-1 Env did not interfere with an AMLV Env-mediated infection by HIV-1(AMLV/HIV-1) pseudotypes of CD4(-) HEK293 cells. MAb neutralization of chimeric virions could be described as a third-order function of the proportion of Env antigen refractory to MAb binding. This scenario is consistent with the Env oligomer constituting the minimal functional unit and neutralization occurring incrementally as each Env oligomer binds MAb. Alternatively, the data could be fit to a sigmoid function. Thus, these data could not exclude the existence of a threshold for neutralization. However, results from MAb neutralization of chimeric virus containing wild-type Env and Env defective in CD4 binding was readily explained by a model of incremental MAb neutralization. In summary, the data indicate that MAb neutralization of T-cell line-adapted HIV-1 is incremental rather than all or none and that each MAb binding an Env oligomer reduces the likelihood of infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.