Abstract

Ecological stoichiometry (ES) and allometry offer frameworks for predicting how nutrient recycling varies within and among animal species. Despite the importance of benthic-derived nutrients in most aquatic systems, predictions based on ES and allometry have been poorly tested among benthic invertebrate consumers. Here, we show that the rates and ratios at which three freshwater benthic invertebrate species (a crustacean, an insect, and a polychaeta) recycled nitrogen (N) and phosphorus (P) can be partially predicted by ES and allometry depending on whether data are analyzed intra- or interspecifically. Mass-specific N and P excretion rates were negatively correlated with invertebrate body size both among and within taxa, supporting allometric predictions. However, mass-specific N and P excretion rates were positively and negatively correlated to invertebrate body N and P, respectively, but only when data were analyzed intraspecifically. As a corollary, the mass-specific N:P excretion ratio was positively related to body N:P ratio. Such a contrasting pattern on excretion-mediated N and P recycling suggests that stoichiometric constraints regarding consumer-resource imbalances for the three species utilized in this study may be stronger for P than for N. Our results indicate that the variation in nutrient recycling, which is mediated by taxonomic constraints on stoichiometry and allometry, may substantially help us to understand the importance of benthic detritivorous species to the functioning of aquatic ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.