Abstract

Metal nitride is an important new type of Epsilon-near-zero (ENZ) materials applicable in visible and near infrared. In this study, NbNx films with different nitrogen content Rn were prepared by magnetron sputtering. The results show that the films are stoichiometry-tunable on the lattice constant, chemical state, and plasmonic properties. Importantly, NbNx films exhibit dual ENZ behavior tunable in the range of 400 to 1000 nm, and the absolute value of the negative real part of epsilon is below 1.0. Increased Rn reduces the screened plasma frequency and narrows the ENZ range by introducing different non-stoichiometric defects. The result of first-principle calculation show that non-stoichiometric defects affect the band structure and the density of states, and the cation vacancies are the main defects tailoring the ENZ behavior of the NbNx films. As examples of the application, we provide conceptual designs of angular filter and perfect absorber, the performances of which can be enhanced by NbNx films. NbNx is proved to be an ENZ material with simple composition, easy preparation and high tunability in a wide range. The tunable dual ENZ characteristics of NbNx films highlight their significant future in visible and near infrared nanophotonic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.