Abstract

Insulin receptor molecules in rat adipocyte plasma membranes were shown to be monovalent with respect to their capacity to bind insulin. The 1:1 stoichiometry for insulin binding was determined by a "double-probe labeling" procedure, wherein 125I-insulin (probe 1) was affinity cross-linked to its receptor in the presence of an excess saturating concentration of an unlabeled biotinylated insulin derivative (probe 2). If the receptor were competent to bind more than one insulin molecule, any receptor molecule that was cross-linked to probe 1 also should have been cross-linked to probe 2 in the double probe labeling procedure. The monovalent character of the insulin receptor was indicated by the failure of the probe 1-linked receptor to be cross-linked to probe 2. This was indicated by the failure of succinylavidin to increase the molecular weight of the probe 1-linked receptor. Control experiments indicated that succinylavidin increased the molecular weight of receptor that had been cross-linked to probe 2. The 1:1 stoichiometry for insulin binding demonstrated here indicates that if insulin receptors contain more than one insulin binding subunit, the binding of insulin to its receptor must be a highly negatively cooperative process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.