Abstract

Coexisting monoclinic M(1) (insulating) and rutile (metallic) domains were observed in free-standing vanadium dioxide nanobeams at room temperature. Similar domain structures have been attributed to interfacial strain, which was not present here. Annealing under reducing conditions indicated that a deficiency of oxygen stabilizes the rutile phase to temperatures as low as 103 K, which represents an unprecedented suppression of the phase transition by 238 K. In a complementary manner, oxygen-rich growth conditions stabilize the metastable monoclinic M(2) and triclinic T (or M(3)) phases. A pseudophase diagram with dimensions of temperature and stoichiometry is established that highlights the accessibility of new phases in the nanobeam geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.