Abstract
ZnO thin films were deposited on quartz glasses by a radio frequency (rf) magnetron sputtering. The mechanism for stoichiometry in the ZnO thin films was investigated by adjusting Ar/O2 working gas ratio during deposition. The optical emission spectroscopy (OES) in situ measurement revealed the kinetics species variation during rf plasma deposition process. It was found that the intensity of the excited atomic oxygen (O*) was increased with the oxygen ratio increasing, resulting in enhancing the oxidization effect during ZnO film fabrication. On the contrary, the intensities of atomic zinc emission were gradually decreased, resulting in the zinc ratio in the film were decreased with the oxygen ratio increasing. Therefore, it is possible to control the stoichiometry of ZnO film by simply adjusting the working gas ambient in the rf plasma deposition. The structural and optical properties of ZnO thin films were investigated as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.