Abstract

This study presents the effect of stoichiometry and annealing condition on Ti–Cr AB2-type hydrogen storage alloys. Prior to annealing the majority phase of the as-cast alloys was the C14 Laves phase, with separate Ti and Cr phases. Annealing treatment (1273 K/14 d) led to a transition from C14 to C15 Laves phase structure. Both C14 (as-cast) and C15 (annealed) cell size increased with Ti content, up to a ratio (Cr/Ti) of 1.6, due to B-site Ti substitution in the lattice up to a limit. Pressure composition isotherm (PCI) measurements demonstrated alloys containing a greater Ti content had a better maximum hydrogen storage capacity (1.5 vs. 1.03 wt%) and lower plateau pressure (9.4 vs. 15.8 bar) at 253 K. Annealing resulted in a lower storage capacity (1.05 vs. 1.49 wt%), greater plateau pressure (ca. 30 bar) and flatter plateau slope (25 % reduction in plateau slope). Reduction in hydrogen storage capacity of annealed alloys could be due to diffusion of residual Cr in the alloy into the C15 Laves phase during the annealing process, thereby changing the local composition as confirmed through X-ray diffraction (XRD).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.