Abstract

Reaction systems in chemistry, physical chemistry, and biochemistry, which can be described by true or pseudo-stoichiometric relationships between species, and, therefore, represented with stoichiometric models, are usually very complex. For the analysis of the models of these complex nonlinear reaction systems with more than three variables, which can be in different dynamic states like multistability, oscillatority or chaos, some general mathematical methods such as the Stoichiometric network analysis (SNA) must be used. Although the SNA is a powerful method for systematic examination of complex reaction systems, identification of underlying reaction pathways, and stability analysis of dynamic states, this method is practically unknown among mathematicians. Therefore, a simple application of SNA to one five-dimensional model is given here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call