Abstract

AbstractDue to the huge difference in the solubility‐product constants (Ksp) between the precipitates of Lu and Al, the synthesis of lutetium aluminum garnet (Lu3Al5O12, LuAG) nanopowders by coprecipitation method is prone to Lu loss, resulting in the creation of Al2O3 secondary phase. In this work, coprecipitated (Ce0.001Ca0.0015Lu(0.9975+x%))3Al5O12 (x = 0, 0.9, 1.2, 1.5) nanopowders with different starting stoichiometries are synthesized and combined with vacuum pre‐sintering and hot‐isostatic pressing to fabricate scintillating ceramics. The effect of compensated Lu content on the phase composition, microstructure, optical properties, and scintillation performance of ceramics is analyzed. The complete elimination of the secondary phase requires an additional compensation of 1.2% of Lu, which gives the best transmittance in ceramics. When x = 1.5, excessive Lu forms LuAl antisite defect, leading to the decrease of both light yield and intensity of the fast scintillation component.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.