Abstract

A stoichiometric model of central metabolism was developed based on new information regarding metabolism in this bacterium to evaluate the steady-state growth capabilities of the serine cycle facultative methylotroph Methylobacterium extorquens AM1 during growth on methanol, succinate, and pyruvate. The model incorporates 20 reversible and 47 irreversible reactions, 65 intracellular metabolites, and experimentally-determined biomass composition. The flux space for this underdetermined system of equations was defined by finding the elementary modes, and constraints based on experimental observations were applied to determine which of these elementary modes give a reasonable description of the flux distribution for each growth substrate. The predicted biomass yield, on a carbon atom basis, is 49.8%, which agrees well with the range of published experimental yield measurements (37-50%). The model predicts the cell to be limited by reduced pyridine nucleotide availability during methylotrophic growth, but energy-limited when growing on multicarbon substrates. Mutation and phenotypic analysis was used to explore a previously unknown region of the metabolic map and to confirm the stoichiometry of the pathways in this region used in the metabolic model. Based on genome sequence data and simulation results, three enzymes involved in C(3)-C(4) interconversion pathways were predicted to be mutually redundant: malic enzyme, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate synthase. Insertion mutations in the genes predicted to encode these enzymes were made and these mutants were capable of growing on all substrates tested, confirming the redundancy of these pathways. Likewise, pathway analysis suggests that the TCA cycle enzymes citrate synthase and succinate dehydrogenase are essential for all growth substrates. In keeping with these predictions, null mutants could not be obtained in these genes. Finally, a similar model was developed for the ribulose monophosphate pathway obligate methylotroph Methylobacillus flagellatum KT to compare the efficiency of carbon utilization in the two types of methylotrophic carbon utilization pathways. The predicted yield for this organism on methanol is 65.9%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.