Abstract

Little is known about why Dicranopteris dichotoma can succeed in a nutrient-limited environment. This study investigated the stoichiometric mechanisms of D. dichotoma growth and resistance to nutrient limitation in the red soil hilly region of China. We examined D. dichotoma growth, soil nutrients, and stoichiometric variables in the early ecological restoration stage and across the ecological restoration chronosequence. Most of the D. dichotoma growth factors rapidly increased with the arbor-bush-herb mixed plantation and maintained a high level. Soil P was a main factor influencing D. dichotoma growth across the ecological restoration chronosequence, whereas its role is unclear in the early ecological restoration stage. D. dichotoma demanded low C and P and possessed high N and P utilization rates, and N and P distribution was ranked as leaf > root and rhizome > stem. The stoichiometry of D. dichotoma is a relatively weak stoichiometric homeostasis across the whole ecological restoration chronosequence with relatively strong stoichiometric homeostasis in the early ecological restoration stage. Stoichiometry can be used to explore the underlying mechanisms that allow D. dichotoma to succeed to a great extent. D. dichotoma can play an important role in ecological restoration, and microtopography, especially valleys, should be created to trigger the succession of D. dichotoma in the red soil hilly region of China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.