Abstract
BackgroundGenome-scale metabolic models (GSMM) integrating transcriptomics have been widely used to study cancer metabolism. This integration is achieved through logical rules that describe the association between genes, proteins, and reactions (GPRs). However, current gene-to-reaction formulation lacks the stoichiometry describing the transcript copies necessary to generate an active catalytic unit, which limits our understanding of how genes modulate metabolism. The present work introduces a new state-of-the-art GPR formulation that considers the stoichiometry of the transcripts (S-GPR). As case of concept, this novel gene-to-reaction formulation was applied to investigate the metabolic effects of the chronic exposure to Aldrin, an endocrine disruptor, on DU145 prostate cancer cells. To this aim we integrated the transcriptomic data from Aldrin-exposed and non-exposed DU145 cells through S-GPR or GPR into a human GSMM by applying different constraint-based-methods.ResultsOur study revealed a significant improvement of metabolite consumption/production predictions when S-GPRs are implemented. Furthermore, our computational analysis unveiled important alterations in carnitine shuttle and prostaglandine biosynthesis in Aldrin-exposed DU145 cells that is supported by bibliographic evidences of enhanced malignant phenotype.ConclusionsThe method developed in this work enables a more accurate integration of gene expression data into model-driven methods. Thus, the presented approach is conceptually new and paves the way for more in-depth studies of aberrant cancer metabolism and other diseases with strong metabolic component with important environmental and clinical implications.
Highlights
Genome-scale metabolic models (GSMM) integrating transcriptomics have been widely used to study cancer metabolism
We evaluated the improvements in transcriptomics-based model-driven analysis, when the stoichiometry is incorporated to the classical GPR formulation (S-GPR), to study the metabolism of Aldrin-exposed and non-exposed DU145 prostate cancer (PC) cells
Refinement of the generic GSMM to fit specific context features The computational analysis performed in this work was based in one of the latest reconstruction of human metabolism (HMR2) [17], with 136 metabolic pathways, 3160 unique metabolites, 3765 metabolic genes and 8181 reactions
Summary
Genome-scale metabolic models (GSMM) integrating transcriptomics have been widely used to study cancer metabolism This integration is achieved through logical rules that describe the association between genes, proteins, and reactions (GPRs). This novel gene-to-reaction formulation was applied to investigate the metabolic effects of the chronic exposure to Aldrin, an endocrine disruptor, on DU145 prostate cancer cells To this aim we integrated the transcriptomic data from Aldrin-exposed and non-exposed DU145 cells through S-GPR or GPR into a human GSMM by applying different constraint-based-methods. GSMMs are built in a bottom-up manner gathering all known biochemical reactions encoded by a given organism’s genome [4] These models describe the associations between genes, proteins and reactions (the so-called GPRs) [5]. GPRs are generated using Boolean formulations describing gene(s) encoding the protein(s) required to catalyze a given reaction
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.