Abstract

Autocatalysis underlies the ability of chemical and biochemical systems to replicate. Recently, Blokhuis et al. (PNAS 117(41):25230-25236, 2020) gave a stoechiometric definition of autocatalysis for reaction networks, stating the existence of a combination of reactions such that the balance for all autocatalytic species is strictly positive, and investigated minimal autocatalytic networks, called autocatalytic cores. By contrast, spontaneous autocatalysis-namely, exponential amplification of all species internal to a reaction network, starting from a diluted regime, i.e. low concentrations-is a dynamical property. We introduce here a topological condition (Top) for autocatalysis, namely: restricting the reaction network description to highly diluted species, we assume existence of a strongly connected component possessing at least one reaction with multiple products (including multiple copies of a single species). We find this condition to be necessary and sufficient for stoechiometric autocatalysis. When degradation reactions have small enough rates, the topological condition further ensures dynamical autocatalysis, characterized by a strictly positive Lyapunov exponent giving the instantaneous exponential growth rate of the system. The proof is generally based on the study of auxiliary Markov chains. We provide as examples general autocatalytic cores of Type I and Type III in the typology of Blokhuis et al. (PNAS 117(41):25230-25236, 2020) . In a companion article (Unterberger in Dynamical autocatalysis for autocatalytic cores, 2021), Lyapunov exponents and the behavior in the growth regime are studied quantitatively beyond the present diluted regime .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call