Abstract

Cold-water fish stocks are increasingly affected by steadily increasing water temperatures. The question arises whether stock management can be adapted to mitigate the consequences of this climatic change. Here, we estimate the effects of increasing water temperatures on fisheries yield and population dynamics of whitefish, a typical cold-water fish species. Using a process-based population model calibrated on an empirical long-term data set for the whitefish population (Coregonus lavaretus (L.) species complex) of the pre-alpine Lake Irrsee, Austria, we project density-dependent and temperature-dependent population growth and compare established stock enhancement strategies to alternative stocking strategies under the aspect of increasing water temperatures and cost neutrality. Additionally, we contrast the results obtained from the process-based model to the results from simple regression models and argue that the latter show qualitative inadequacies in projecting catch with rising temperatures. Our results indicate that increasing water temperatures reduce population biomass between 2.6% and 7.9% and catch by the fishery between 24% and 48%, depending on temperature scenario and natural mortality calculation. These reductions are caused by accelerated growth, smaller asymptotic size and lower annual survival of whitefish. Regarding stocking strategies under constant temperatures, we find that stocking mostly whitefish larvae, produces higher population biomass than stocking mostly one-summer-old whitefish, while catch remains almost constant. With increasing temperatures, stocking one-summer-old fish is more beneficial for the angling fishery. Adaption to climate change by changing stocking strategies cannot, however, prevent an overall reduction in catch and population size of this cold-water fish species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.