Abstract
The stock turnover values are sensitive to external factors, and remain great challenges in its prediction. The consideration is that search engine data can reflect market environment, policies and attentions on stocks. Therefore, a dual sides autoregression (DSAR) method is proposed to benefit from both observed turnover values and exogenous data. The proposed DSAR consists of linear representation stage and combination stage. In linear representation stage, the short-term patterns of turnover values and query data are represented, respectively. In combination stage, the outputs from previous stages are combined. Intensive experiments on two groups of data collections show the effectiveness of our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.