Abstract
Stock analysis is a challenging task that involves modelling complex and nonlinear dynamics of stock prices and volumes. Long Short-Term Memory (LSTM) is a type of recurrent neural network that can capture long-term dependencies and temporal patterns in time series data. In this paper, a stock analysis method based on LSTM is proposed that can predict future stock prices and transactions using historical data. Yfinance is used to obtain stock data of four technology companies (i.e. Apple, Google, Microsoft, and Amazon) and apply LSTM to extract features and forecast trends. Various techniques are also used such as moving average, correlation analysis, and risk assessment to evaluate the performance and risk of different stocks. When compare the method in this paper with other neural network models such as RNN and GRU, the result show that LSTM achieves better accuracy and stability in stock prediction. This paper demonstrates the effectiveness and applicability of LSTM method through experiments on real-world data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.