Abstract
Predictions on stock market prices are a great challenge due to the fact that it is an immensely complex, chaotic and dynamic environment. There are many studies from various areas aiming to take on that challenge and Machine Learning approaches have been the focus of many of them. There are many examples of Machine Learning algorithms been able to reach satisfactory results when doing that type of prediction. This article studies the usage of LSTM networks on that scenario, to predict future trends of stock prices based on the price history, alongside with technical analysis indicators. For that goal, a prediction model was built, and a series of experiments were executed and theirs results analyzed against a number of metrics to assess if this type of algorithm presents and improvements when compared to other Machine Learning methods and investment strategies. The results that were obtained are promising, getting up to an average of 55.9% of accuracy when predicting if the price of a particular stock is going to go up or not in the near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.