Abstract
Stock market prediction is an important topic in ?nancial engineering especially since new techniques and approaches on this matter are gaining value constantly. In this project, we investigate the impact of sentiment expressed through Twitter tweets on stock price prediction. Twitter is the social media platform which provides a free platform for each individual to express their thoughts publicly. Specifically, we fetch the live twitter tweets of the particular company using the API. All the stop words, special characters are extracted from the dataset. The filtered data is used for sentiment analysis using Naïve bayes classifier. Thus, the tweets are classified into positive, negative and neutral tweets. To predict the stock price, the stock dataset is fetched from yahoo finance API. The stock data along with the tweets data are given as input to the machine learning model to obtain the result. XGBoost classifier is used as a model to predict the stock market price. The obtained prediction value is compared with the actual stock market value. The effectiveness of the proposed project on stock price prediction is demonstrated through experiments on several companies like Apple, Amazon, Microsoft using live twitter data and daily stock data. The goal of the project is to use historical stock data in conjunction with sentiment analysis of news headlines and Twitter posts, to predict the future price of a stock of interest. The headlines were obtained by scraping the website, FinViz, while tweets were taken using Tweepy. Both were analyzed using the Vader Sentiment Analyzer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Scientific Research in Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.