Abstract
Predicting stock market prices is crucial subject at the present economy. Hence, the tendency of researchers towards new opportunities to predict the stock market has been increased. Researchers have found that, historical stock data and Search Engine Queries, social mood from user generated content in sources like Twitter, Web News has a predictive relationship to the future stock prices. Lack of information such as social mood was there in past studies and in this research, we discuss an effective method to analyze multiple information sources to fill the information gap and predict an accurate future value. For this, LSTM - RNN models were employed to analyze sperate sources and Ensembled method with Weighted Average and Differential Evolution technique were used for more accurate prediction of the stock prices. And highly accurate predictions were made to one-day, seven-days, 15-days and 30 days for the future. So that investors could gain an insight into what they are inventing for and the companies to track how well they will perform in the stock market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.