Abstract
Stock index prediction seems to be a challenging task of the financial time series prediction process especially in emerging markets with their complex and inefficient structures. Multivariate adaptive regression splines (MARS) is a nonlinear and non-parametric regression methodology and has been successfully used in classification tasks. However, there are few applications using MARS in stock index prediction. In this study, we compare the forecasting performance of MARS, backpropagation neural network (BPN), support vector regression (SVR), and multiple linear regression (MLR) models in Shanghai B-Share stock index. Experimental results show that MARS outperforms BPN, SVR and MLR in terms of prediction error and prediction accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.