Abstract

Deep neural networks have been shown to outperform conventionalstate-of-the-art approaches in several structured predictionapplications. While high-performance computing devices such asGPUs has made developing very powerful deep neural networkspossible, it is not feasible to run these networks on low-cost, lowpowercomputing devices such as embedded CPUs or even embeddedGPUs. As such, there has been a lot of recent interestto produce efficient deep neural network architectures that can berun on small computing devices. Motivated by this, the idea ofStochasticNets was introduced, where deep neural networks areformed by leveraging random graph theory. It has been shownthat StochasticNet can form new networks with 2X or 3X architecturalefficiency while maintaining modeling accuracy. Motivated bythese promising results, here we investigate the idea of Stochastic-Net in StochasticNet (SiS), where highly-efficient deep neural networkswith Network in Network (NiN) architectures are formed ina stochastic manner. Such networks have an intertwining structurecomposed of convolutional layers and micro neural networksto boost the modeling accuracy. The experimental results showthat SiS can form deep neural networks with NiN architectures thathave 4X greater architectural efficiency with only a 2% dropin accuracy for the CIFAR10 dataset. The results are even morepromising for the SVHN dataset, where SiS formed deep neuralnetworks with NiN architectures that have 11.5X greater architecturalefficiency with only a 1% decrease in modeling accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call