Abstract

It is generally believed that associative memory in the brain depends on multistable synaptic dynamics, which enable the synapses to maintain their value for extended periods of time. However, multistable dynamics are not restricted to synapses. In particular, the dynamics of some genetic regulatory networks are multistable, raising the possibility that even single cells, in the absence of a nervous system, are capable of learning associations. Here we study a standard genetic regulatory network model with bistable elements and stochastic dynamics. We demonstrate that such a genetic regulatory network model is capable of learning multiple, general, overlapping associations. The capacity of the network, defined as the number of associations that can be simultaneously stored and retrieved, is proportional to the square root of the number of bistable elements in the genetic regulatory network. Moreover, we compute the capacity of a clonal population of cells, such as in a colony of bacteria or a tissue, to store associations. We show that even if the cells do not interact, the capacity of the population to store associations substantially exceeds that of a single cell and is proportional to the number of bistable elements. Thus, we show that even single cells are endowed with the computational power to learn associations, a power that is substantially enhanced when these cells form a population.

Highlights

  • Associative learning Almost all animals can associate neutral stimuli and stimuli of ecological significance [1]

  • Our Genetic Associative Memory model (GAM) for associative learning is based on three components: (1) a memory module that provides the long time-scale necessary for the maintenance of memories for long periods of time; (2) a mechanism for encoding the desired memories and (3) a response mechanism for the readout or retrieval of the stored memories in response to the relevant stimuli

  • We explored the ability of a general Genetic regulatory networks (GRN) to encode associations

Read more

Summary

Introduction

Associative learning Almost all animals can associate neutral stimuli and stimuli of ecological significance [1]. Naıve rabbits respond to an airpuff to the cornea (Unconditioned Stimulus, US) with eyelid closure (Unconditioned Response, UR). Repeated pairing of the CS and the US forms a cognitive association between the CS and the US such that the trained animal responds to the CS with eyelid closure, a response known as Conditioned Response (CR). Two important characteristics of associative learning are (1) specificity and (2) generality. The CR does not reflect a general arousal. The animal learns to respond to the CS.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call