Abstract

Probability of detection (POD) is used for reliability analysis in nondestructive testing (NDT) area. Traditionally, it is determined by experimental tests, while it can be enhanced by physics-based simulation models, which is called model-assisted probability of detection (MAPOD). However, accurate physics-based models are usually expensive in time. In this paper, we implement a type of stochastic polynomial chaos expansions (PCE), as alternative of actual physics-based model for the MAPOD calculation. State-of-the-art least-angle regression method and hyperbolic sparse technique are integrated within PCE construction. The proposed method is tested on a spherically-void-defect benchmark problem, developed by the World Federal Nondestructive Evaluation Center. The benchmark problem is added with two uncertainty parameters, where the PCE model usually requires about 100 sample points for the convergence on statistical moments, while direct Monte Carlo method needs more than 10000 samples, and Kriging based Monte Carlo method is oscillating. With about 100 sample points, PCE model can reduce root mean square error to be within 1% standard deviation of test points, while Kriging model cannot reach that level of accuracy even with 200 sample points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.